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The source park of the Yellow River (SPYR), as a vital ecological shelter on the
Qinghai-Tibetan Plateau, is suffering different degrees of degradation and desertification,
resulting in soil erosion in recent decades. Therefore, studying the mechanism,
influencing factors and current situation of soil erosion in the alpine grassland
ecosystems of the SPYR are significant for protecting the ecological and productive
functions. Based on the 137Cs element tracing technique and machine learning
algorithms, five strategic variable selection algorithms based on machine learning
algorithms are used to identify the minimal optimal set and analyze the main factors
that influence soil erosion in the SPYR. The optimal model for estimating soil erosion
in the SPYR is obtained by comparisons model outputs between the RUSLE and
machine learning algorithms combined with variable selection models. We identify the
spatial distribution pattern of soil erosion in the study area by the optimal model. The
results indicated that: (1) A comprehensive set of variables is more objective than
the RUSLE model. In terms of verification accuracy, the simulated annealing -Cubist
model (R = 0.67, RMSD = 1,368 t km−2

·a−1) simulation results represents the best
while the RUSLE model (R = 0.49, RMSD = 1,769 t·km−2

·a−1) goes on the worst.
(2) The soil erosion is more severe in the north than the southeast of the SPYR. The
average erosion modulus is 6,460.95 t·km−2

·a−1 and roughly 99% of the survey region
has an intensive erosion modulus (5,000–8,000 t·km−2

·a−1). (3) Total erosion loss is
relatively 8.45·108 t·a−1 in the SPYR, which is commonly 12.64 times greater than
the allowable soil erosion loss. The economic monetization of SOC loss caused by soil
erosion in the entire research area was almost $47.90 billion in 2014. These results
will help provide scientific evidences not only for farmers and herdsmen but also for
environmental science managers and administrators. In addition, a new ecological policy
recommendation was proposed to balance grassland protection and animal husbandry
economic production based on the value of soil erosion reclassification.

Keywords: grassland degradation, 137Cs element tracing, soil erosion classification, restoration and protection
management, alpine grassland
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INTRODUCTION

The Qinghai-Tibetan Plateau is acknowledged as the “Third
Pole” and has received an increasing attention toward ecological
and environmental concerns (Yao et al., 2012; Madsen, 2016).
The source park of the Yellow River (SPYR), located in
the North-Eastern range of the Qinghai-Tibetan Plateau, is a
dynamic ecological shelter and is one of the most vulnerable
ecological zones in the world (Meng et al., 2016). Because
of the conservation of water bodies and provision of water
resources to both communities and adjacent areas, the SPYR
is recognized as the “Water Tower of the Yellow River” (Ge
et al., 2018; Wu et al., 2018). The main part of the SPYR
is covered by alpine grassland. The alpine grasslands in the
SPYR not only plays an exceptional role in ecological functions
such as water conservation, biodiversity protection, and carbon
fixation (Harris, 2010), but also play critical roles in livestock
production, representing the main sources of income for local
pastoralists. However, nearly 90% of this alpine grassland suffers
different degrees of degradation and desertification due to climate
change, global warming and anthropological activities (Evans,
2005; Fassnacht et al., 2015; Mariano et al., 2018). Portions of
the grasslands are experiencing moderate and severe degradation,
40.8 and 17.58%, respectively (Miehe et al., 2019) and a direct
soil erosion is also resulted in recent decades (Yao et al., 2016).
This erosion not only reduces soil fertility and pollutes water
resources but also responsible for sediment accumulation, river
obstructions, downstream flooding and flow patterns (Evans
et al., 2017). Consequently, exploring the mechanism, influencing
factors, and current situation of soil erosion in the alpine
grassland ecosystems of the SPYR is significant for protecting the
ecological and productive functions.

Soil erosion is a complicated process that depends on
soil properties, ground slope, vegetation, freeze/thawing, wind
erosivity, and rainfall/precipitation volume and intensity (Li
et al., 2018; Zhang et al., 2019). Soil erosion research is generally
conducted by field observations (Mhazo et al., 2016; Li et al.,
2018; Zeng et al., 2018), tracer studies (Jia et al., 2016; Wang
et al., 2017), experimental operations (Zhang et al., 2019) and soil
erosion simulations (Konz et al., 2012). 137Cs is an anthropogenic
radioisotope, which has been widely used to quantify soil erosion
at the Spatio-Temporal scale, and to calibrate or validate the
erosion models (Li et al., 2021). Conventional experimental
methods can be easily applied to small-scale studies, such as
research at the patch scale and slope scale (Bakker et al., 2005),
and the results help to investigate the potential occurrence of soil
erosion (Teng et al., 2018). However, traditional experimental
methods are labor-intensive, expensive, and difficult to apply
in large-scale research (Efthimiou, 2018). Therefore, model
simulation is a convenient method for studying large-scale
soil erosion and is commonly applied in such research fields
(Abdelwahab et al., 2018; Starkloff et al., 2018). The earliest
soil erosion model [the universal soil loss equation (USLE)]
was established by Wischmeier and Smith (1958). It is widely
reported that erosion plot data collected in United States have
been used to develop and calibrate the Revised Universal Soil Loss
Equation (RUSLE), which was further used to estimate global

soil erosion (Doetterl et al., 2012; Prasannakumar et al., 2012),
and it can provide valuable input for the SPYR as well as China,
based on the challenge of sustainable grassland resource uses. In
addition, various physical models of soil erosion processes have
also been established in recent years, including the Water Erosion
Prediction Project (WEPP) model (Kinnell, 2017), Revised Wind
Erosion Equation (RWEQ) (Teng et al., 2021), European soil
erosion model (EUROSEM) (Veihe et al., 2001), Limburg soil
erosion model (LISM) and soil erosion model of Mediterranean
regions (SEMMED) (De Jong et al., 1999). However, these models
are derived from specific scientific concerns and applicable to
certain regions. The factors related to the specific alpine grassland
grazing ecosystem of the SPYR in the Qinghai-Tibetan Plateau,
such as freeze/thaw cycles, grazing-induced erosion (Evans, 2005;
Lin et al., 2008), wind erosion, and human activities, have not
been considered in the soil erosion process (Gourfi et al., 2018).
Therefore, it is unreasonable to use these models in the present
study because they may cause the prediction results to be biased
or inaccurate for this region.

With the development of “3s” technologies [geographic
information system (GIS), remote sensing (RS), a global
positioning system (GPS)], it is possible to identify
comprehensive environmental variables to characterize soil
erosion (Gholami et al., 2018). Thus, a comprehensive set of soil
erosion variables can be integrated, including meteorological,
soil, topography, vegetation, and management variables.
A strategic variable screening process was developed to avoid
redundancy and collinearities between variables to determine
the minimal-optimal set for developing simulation models by
a machine learning algorithm (Xiong et al., 2014). A machine
learning algorithm is a process used to fit a model to a dataset
through training or learning (Willcock et al., 2018). Many types
of machine learning algorithms have been used extensively in
determining soil characteristics, such as soil organic carbon
(SOC), soil nutrient content, and soil parent material (Heung
et al., 2016; Zhi et al., 2018). However, innovative research on
soil erosion based on multiple machine learning algorithms is
rare, especially in the alpine grassland ecosystem of the SPYR.
In this study, five strategic variable selection algorithms based
on machine learning algorithms, namely, the Boruta all-relevant
(BOR), simulated annealing (SA), genetic algorithm (GA),
recursive features elimination (RFE), and univariate filters (UF),
are used to identify the minimal-optimal set (You et al., 2014;
Hosseini et al., 2016; Yang R. M. et al., 2016; Li and Ma, 2018).
Compared to logistic regression, bivariate and multivariate
statistical models, several modern machine learning approaches
such as the generalized linear model (GLM), cubist model
(cubist), random forest model (RFM), and boosting tree (BST)
model can overcome the obstacles of spatial modeling in the
field of soil erosion assessment (Gayen et al., 2019) and achieve a
higher prediction accuracy (Marjanoviæ et al., 2011; Micheletti
et al., 2013). Hence the GLM, cubist, RFM, and BST model would
be adopted to estimate soil erosion, and a cross-comparison of
those models can be performed (Li et al., 2017; Chang et al., 2018;
Peng et al., 2018; Wang et al., 2019).

The objectives of this study were to (1) Categorize the soil
erosion parameters set, screened by the machine learning method
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and analyze the main factors that influence soil erosion in
the SPYR. (2) Determine the optimal model for estimating
soil erosion in the SPYR that can be combined with specific
environmental factors of the alpine grassland ecosystem of
the SPYR. (3) Identify the spatial distribution pattern of soil
erosion in the study area by the optimal prediction model.
The soil erosion classification and direct economic losses
caused by soil erosion enable farmers and policymakers to
generate grassland management strategies with the expectation
of profit and corresponding risk. These results will help
to provide scientific direction for grassland protection, soil
restoration and establishment of policy framework for ecological
development in the SPYR.

MATERIALS AND METHODS

Study Area
SPYR (N32◦02′–36◦13′, E95◦42′–102◦17′) comprises an area
of about 130,798 km2, and the area records for 35% of the
total runoff of the Yellow River (Zheng et al., 2018). The
elevation of the SPYR ranges from 2,052 to 6,227 m and
descends from the Southwest to the Northeast (Figure 1).
Topographic features and geographical situations pose an impact
on the natural environment, with characteristics such as frost
temperatures, intense diurnal temperatures, frequent seasonal
rainfall, recurrent strong winds, and powerful solar radiation (Ge
et al., 2017). Most of the study area has a typical continental
plateau climate, with an average annual temperature ranging −4
and 2◦C rising from Western to Eastern. Average annual rainfall
ranges from 350 to 750 mm and is concentrated from June to
September. The soil types are mainly alpine meadow soil and
steppe soil. Alpine grassland accounts for 95.12% of the total area
of the SPYR, and it includes alpine meadow at 83.12% and alpine
steppe at 12% (Liang et al., 2016).

Soil Sampling and Analysis
Soil Sampling Design
Considering that the terrain of the study region is treacherous
with high mountains and glaciers, two transect surveys were
performanced which were superimposed an additional constraint
that sampling sites were selected based on NDVI levels under
various conditions of grassland types and topography to ensure
potential representative sampling locations. The one runs
throughout the whole study area from Northeast to Southwest
along national road G214, while the other transect survey
along the Dawu River in the Northeast of Guo Luo Tibetan
Autonomous Prefecture (Figure 1). Each sampling point was
located at least 500 m away from the highway or river bank
to avoid the disturbance caused by proximity. During July and
August 2014 (keeping in view of the returning green stage and the
accessibility to the sampling sites), 165 soil samples were collected
from the soil surface using an internal diameter cores sampler
with 20 cm long and 5 cm diameter from the soil surface. The bulk
density of each sample of 0–20 cm layers was obtained from each
soil mass and sampled volume as described earlier by Nosrati
et al. (2015) and Wang et al. (2017). The SOC was determined

using the potassium dichromate, external heating method (Cao
et al., 2011). The vegetation and soil samples were measured at
each sampling site by a standard method (Ren, 1998).

Cesium-137 Content Analysis
Collected samples were air-dried, ground, and passed through
a 2 mm sieve. Each sample 137Cs radionuclide content was
analyzed by low background gamma-ray spectrometry using
a hyper pure coaxial germanium detector linked to a multi-
channel digital analyzer system (EG&G, ORTEC) (Haribala
et al., 2016) at the School of Nuclear Science and Technology,
Lanzhou University. The 137Cs radionuclide content (Bq kg−1)
was detected at the 661.6 keV peak over a counting time of 24 h.
Each sample weight exceeded 300 g and supplied a precision of
approximately±5% at the 95% confidence level.

The observed soil erosion modulus was calculated by
following three model (Wang Y. B. et al., 2014; Li et al., 2021):

CPIi = Ci ∗ W/S (1)

where CPIi is the areal activity (Bq·m−2) of ith sampling point,
i the sample number, Ci

137Cs radionuclide content of the ith
sample (Bq kg−1), W the mass of ith soil sample (kg), S the corer
area (m2).

CPRi = (CPIi − CRI) ∗ 100/CRI (2)

where CPRi is 137Cs content change rate (%) of the ith sample,
CRI 137Cs background value (Bq·m−2) for the study area. In
this study, the soil 137Cs background value was 2,229.1 Bq·m−2,
which was determined by the SPYR (Wang et al., 2017).

Ei = CPRi
∗ Bdi

∗ DIi
∗ 10, 000/T (3)

where Ei is the observed soil erosion modulus of the ith sampling
point (t·hm−2

·a−1), Bdi soil bulk density (Mg·m−3), DIi soil
layer thickness (m) of the ith sampling point, T time between the
137Cs settling peak (1963) and the sample time.

Data Sources and Pre-processing
Data Sources
Thirty-three environmental variable data sets based on available
data sources on the climate, soil, topography, vegetation, and
management were collected (Appendix Table 1). These data
sources were compiled into raster data by ArcGIS 10.2 software
to construct the soil erosion model. About 40% of these variables
(12) were categorical, including soil taxonomic properties, land-
use and land-cover change (LULC), and vegetation type, while
60% (21) of the variables (Table 1) were continuous, including
organic matter content, vegetation cover, NDVI, frozen earth
period, and climatic and biotic variables.

Gridded Site Characteristics
The elevation, aspect, slope, slope length, and slope factor (LS
factor) were calculated from the digital elevation model (DEM)
using ArcGIS 10.2 software. The DEM data were downloaded
from 90 m Shuttle Radar Topography Mission (SRTM) images1.

1http://www.gscloud.cn
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FIGURE 1 | Map of study area and sampling points.

TABLE 1 | Descriptive statistics of the continuous variables characterizing soil and environmental properties among the 165 sampling sites.

Variable Mean SD Min Max Skewness CV

Temperature (◦C) −2.82 2.2 −12.92 6.17 0.56 −0.78

Precipitation (mm) 507.69 137.67 196.28 1153.7 0.31 0.27

Rainfall erosivity (MJ·mmhm−2
·h−1
·a−1) 621.33 186.46 0 1752.4 −0.44 0.3

Wind velocity (m·s−1) 2.63 0.79 1.07 4.06 0.15 0.3

Soil pH 5.64 1.3 8.6 1 −0.56 0.23

Soil carbonate content (%) 0.18 0.96 0 15 7.69 5.33

Soil sand content (%) 48.85 12.12 4 97 −0.38 0.25

Soil silt content (%) 39.24 6.35 1 54 −1.93 0.16

Soil clay content (%) 11.91 9.02 2 67 1.98 0.76

Soil erodibility 0.26 0.03 0.07 0.38 −2.21 0.12

Frozen earth period (day) 1497 443 0 2550 0.22 0.3

Elevation (m) 4582.7 416.72 2592 6284 −0.71 0.09

Slope (◦) 3.59 3.17 0 27.56 1.52 1.3

Slope length 168.3 104.7 0 359.96 0.1 0.62

LS factor 4.14 5.56 0.12 29 2.35 1.34

NDVI 0.53 0.23 0 0.99 −0.19 0.43

EVI 0.39 0.18 0.03 1 0.1 0.46

Vegetation cover (%) 0.57 0.33 0 1 −0.24 0.58

Vegetation management factor 0.15 0.23 0 1 2.42 1.53

LS factor, slope length and slope factor; NDVI, normalized difference vegetation index; EVI, enhanced vegetation index.
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And resample the image’s spatial resolution from 90 to 100 m.
The projection-type of DEM data was Albers.

Gridded Soil Characteristics
The SOC, soil pH, soil carbonate content, soil sand content,
soil silt content, soil clay content, and frozen earth period were
obtained from the China Soil Map-Based Harmonized World Soil
Database (V1.1). The data source mentioned above comes from
the Cold and Arid Regions Sciences Data Centre of the Chinese
Academy of Sciences (CAS) at Lanzhou2.

Climate Date
The daily precipitation, daily average temperature, and average
wind velocity were based on a dataset of daily surface observation
values in China (V3.0). The 838 meteorological stations data was
acquired from the China Meteorological Data Sharing Service
System website3.

Normalized Difference Vegetation Index (NDVI) and
Enhanced Vegetation Index (EVI)
Normalized Difference Vegetation Index and EVI obtained
from TM/ETM satellite images. The vegetation index products
(MOD13Q1) were downloaded from a NASA website4.

Data Pre-processing
The daily precipitation and daily temperature were averaged
every month; the daily wind velocities were accumulated
every year; and the monthly mean temperature, monthly total
precipitation, and yearly wind velocity were obtained based on
meteorological data using meteorological interpolation software
(ANUSPLIN, version 4.3). The monthly total precipitation was
used to simulate rainfall erosivity. The MOD13Q1 data from
January to December 2014 were transformed and registered into
a GeoTIFF format using the MODIS reprojection tool (MRT).
The maximum NDVI and maximum EVI were selected from
NDVI and EVI datasets from January to December. Vegetation
cover was simulated by the NDVI data. Soil erodibility data and
vegetation management factor data were calculated by the RUSLE
model (Prasannakumar et al., 2012). The details of the other
variables are included in Appendix Table 1.

Methods
Environmental Variable Selection
The parameters and sample data were integrated using the raster-
package function in R 3.4.3 (R Development Core Team, 2017)
software. Then, variables were selected by the BOR, GA, SA, RFE,
and UF algorithms (You et al., 2014; Hosseini et al., 2016; Yang
R. M. et al., 2016; Li and Ma, 2018). The five variable filtering
algorithms were used in R 3.4.3 (R Development Core Team,
2017).

Determining the Optimal Soil Erosion Model
The whole dataset was randomly split into a calibration set
(70%) and a validation set (30%) for model establishment and

2http://sdb.casnw.net/portal/metadata/d69d1cae-07c9-4cf4-8a98-2b63d21e7049
3http://data.cma.cn/
4https://earthdata.nasa.gov/

validation. The GLM forms a multivariate regression relation
between a response variable and several predictor variables. The
advantage of a GLM over simple linear regression is that the
variables may be continuous, categorical, or any combination of
these two allowing for non-linearity in the data (Atkinson and
Massari, 1998; Rudy et al., 2016; Li et al., 2017). Cubist model
is a ruled-based regression technique that builds multivariate
linear regression models at the terminal leaves of a tree and parts
the predictor variates into different subsets (Moisen et al., 2006;
Akpa et al., 2016). RFM trains classification samples through
decision trees and makes predictions based on the results of
the classification, and has the ability to obtain classification and
regression analysis data from various measurement scales with
non-parametric statistics without making assumptions (Li et al.,
2017; Wang et al., 2019; Tang et al., 2021). BST model is based
on a first classification tree with subsequent trees generated by
assigning greater weights to incorrectly classified training data
(Pouteau et al., 2011; Yang R. M. et al., 2016). The GLM, cubist,
RFM, and BST models (Li et al., 2017; Chang et al., 2018; Peng
et al., 2018; Wang et al., 2019) were implemented with the
mboost, bst, plyr, cubist, and RF packages, respectively, in R 3.4.3
(R Development Core Team, 2017). The 24 simulation results of
the predicted soil erosion modulus were obtained by combining 6
algorithms [all relevant (AR), BOR, SA, GA, RFE, and UF] (You
et al., 2014; Hosseini et al., 2016; Yang R. M. et al., 2016; Li and
Ma, 2018) and 4 models (GLM, cubist, RFM and BST) (Li et al.,
2017; Chang et al., 2018; Peng et al., 2018; Wang et al., 2019).
The validation set that were not employed for model construction
were used for the selected model validation and confirmation
with the help of 45-degree line test. The cross-validation of
the validation set were performanced between values of the
predicted soil erosion modulus by the 24 models and values
of the observed soil erosion modulus to evaluate the predictive
ability of each model. The observed soil erosion modulus and
the predicted values were plotted against the predicted data
to find the trend of the slope of the expected curves. If the
expected curve tends to make an angle of 45 degree with the
axes, this means that there is no significant difference between the
actual and predicted values. To evaluate the predictive capability
of the 24 models, the following three performance indicators
were used : the coefficient of determination (R2), root mean
squared deviation (RMSD) and residual prediction deviation
(RPD) (Lin et al., 2013).

The goodness of fit for the RUSLE model and machine
learning algorithms combined with variable selection models
were assessed via comparisons between the predicted results and
observed values to evaluate the reliability and accuracy of the
model output. The root mean square deviation (RMSD), standard
deviation (SD), and correlation coefficients (R) were used to
evaluate model accuracy (Lin et al., 2013). The cross-comparison
results of the R and RMSD in different models are displayed in
the Taylor diagram. The Taylor diagram illustrated R, RMSD, the
standard difference in observations, and the standard difference
in predicted values (Choubin et al., 2018). The polar axes and
the radial axes separately illustrated the correlation coefficient
and the RMSD of the model validation results. The predicted
models were more approached observed point on the x-axis, and
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they presented a relatively higher correlation and low RMSD
(Jia et al., 2016).

Soil Erosion Classification
Prediction results by the optimal soil erosion model were
classified by the Standards for Classification and Gradation
of Soil Erosion (Ministry of Water Resources of the People’s
Republic of China, 2007). The classification results were used
to provide a reference for the soil restoration and ecological
policy. The economic monetization of SOC loss caused by soil
erosion in the SPYR was based on the market value approach
(Costanza et al., 1998). The net soil erosion modulus minus the
tolerable soil erosion modulus is the actual soil erosion modulus
(Hancock et al., 2015). Tolerable soil erosion loss is generally
500 t·km−2

·a−1 (Chen et al., 2000; Li et al., 2009). The values of
SOC were estimated by the C tax ($180·t C) (Patton et al., 2015).

RESULTS

Environment Variable Selections
Among the 33 environmental variables, the number of variables
selected by the GA, RFE, BOR, UF, and SA algorithms was 29, 26,
22, 22, and 13 variables, respectively (Appendix Table 2). The five
algorithms selected precipitation, wind velocity, rainfall erosivity,
frozen earth period, slope, aspect, water flow direction, the NDVI,
land cover, and vegetation type as variables in common that may
play significant roles in explaining the soil erosion mechanism.

Figure 2 compared five variable search methods across four
modeling techniques (GLM, cubist, RFM, and BST) in terms
of both prediction accuracy and model complexity. The cross-
validation results of GA BST model that selected 29 variables
showed slightly inferior performance to the UF cubist model.
This indicated that the 22 variables selected by the UF cubist
model contained better predictive power to that of 29 variable
selected by the GA BST model. Comparing with the UF cubist
model, the SA cubist model had fairly comparable performance
in similar model accuracy, but dramatically decreased model
complexity. The SA cubist model struck a balance between model
complexity and performance. It greatly reduced the number of
variables to only 13 while preserving most of the predicting
power to infer soil erosion. The cross-validation identified and
optimized model parameters. The 13 variables selected by the SA
cubist model captured the major factors – soil organic carbon,
soil property and soil erodibility besides nine common variables
mentioned above involving climate (e.g., precipitation, wind
velocity, and rainfall erosivity), soil (e.g., frozen earth period, soil
organic carbon, soil property, and soil erodibility), topography
(e.g., slope, aspect, and water flow direction), vegetation (e.g.,
vegetation type and NDVI) and management (e.g., land cover)
properties (Figure 2 and Appendix Table 2).

The Optimal Soil Erosion Model
The goodness of fit for the RUSLE models and machine learning
algorithms combined with variable selection models showed that
the GLM (R = 0.63) and cubist model (R = 0.67) performed the
best while RUSLE (R = 0.49) performed the worst (Figure 3). The

Taylor diagram show that (1) the fitting result was poorer for the
RUSLE model than the 24 machine learning models (the location
labeled with ‘RUSLE’ were the outermost from the observation
point). (2) Compared with the other five variable selection
models, the SA variable set combined with the GLM and cubist
model was more consistent with the actual measurements, and
the SA variable set combined with BST was the least consistent
with the actual measurements. (3) Compared with the BST and
RF models, the GLM and cubist models were slightly more
consistent with the field measurements (the points labeled with
‘GLM’ and ‘cubist’ are nearer to the observation point than the
points labeled with ‘BST’ and ‘RFM’). The cross combination of
the BST model and all variable sets had the lowest agreement
(the points labeled with ‘BST’ is the farthest to the observation
point than the other points). (4) Contrast to the AR, BOR, GA,
UF, and RFE variables, the GLM did not present a significant
difference in fitting results (the gaps of the points labeled with
‘RFM’ from the observation point were nearly the same). The
results show that in terms of classification accuracy, the RFE
performs best among the five feature-selection algorithms, and
the Cubist model performs best among the four machine learning
algorithms. In these 24 combinations, the optimal model is the SA
cubist model (R = 0.67, RMSD = 1368).

Spatial Distribution of Soil Erosion
The SA cubist model estimated the total erosion loss was about
8.45 108 t·a−1 in 2014, which is 12.64 times the allowable soil
erosion loss. The soil erosion modulus showed substantial spatial
heterogeneity in the SPYR (Figure 4). The soil erosion modulus
ranged from 4841.68 to 8054.09 t·km−2

·a−1, and the average soil
erosion modulus was 6460.95 t·km−2

·a−1. In general, 99% of
the area in the SPYR belongs to the severe soil erosion modulus
(5,000–8,000 t·km−2

·a−1).
According to the Standards for Classification and Gradation

of Soil Erosion, the region with the most severe soil erosion
modulus (7,000–8,000 t·km−2

·a−1) occupied 12.38% of the total
soil erosion regions. It mainly appeared in the Northern part
of the SPYR. The moderately severe region of the soil erosion
modulus (6,000–7,000 t·km−2

·a−1) occupied 71.19% of the total
soil erosion regions and was distributed in the middle of the
study area. The slightly severe region of the soil erosion modulus
(5,000–6,000 t·km−2

·a−1) occupied 16.43% of the total soil
erosion regions and was distributed South of the SPYR (Figure 4).

DISCUSSION

Selected Key Variables May Provide a
More Precise Soil Erosion Explanation
The simulated soil erosion modulus values were more significant
than that in two previous report (276 and 3,208 t·km−2

·a−1),
which used the RUSLE model (Teng et al., 2018) and RWEQ
model (Teng et al., 2021) to calculate the soil water and wind
erosion modulus on the Qinghai-Tibetan Plateau, respectively.
At the same time, the RUSLE model emphasizes soil erosion
loss by rainfall, slope, aspect, vegetation, and soil erodibility but
ignores soil erosion loss from winds, freeze-thaw cycles, and
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FIGURE 2 | Validation results of 24 models which combing six variable selection algorithms and four machine learning approaches. The six variable selection
algorithms are: all relevant (AR), Boruta all-relevant (BOR), simulated annealing (SA), genetic algorithm (GA), recursive features elimination (RFE), and univariate filters
(UF). The four machine learning approaches are: generalized linear model (glm), cubist model (cubist), random forest model (rfm), and boosting tree model (bst).
Other abbreviations: R2, the coefficient of determination; RMSD, root mean squared deviation; RPD, residual prediction deviation.

human activity. Although few research studies have provided a
comprehensive prediction of soil erosion (Sadeghi et al., 2018;
Shen et al., 2018), high levels of precipitation have been reported
to lead to severe erosion, while low temperatures combined with

adequate precipitation may cause even greater soil losses in the
study area (Yang et al., 2018). The same as the RWEQ model.

Under freeze-thaw conditions, soil moisture is transported,
and the soil structure is damaged; moreover, the soil porosity,
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FIGURE 3 | Performance of RUSLE (revised universal soil loss equation model) and 24 machine learning models at the site level. “Observed” on the x-axis means
the statistical information of the observed dataset. AR, all relevant; BOR, Boruta all-relevant; SA, simulated annealing; GA, genetic algorithm; RFE, recursive features
elimination; UF, univariate filters; GLM, generalized linear model; cubist, cubist model; RFM, random forest model; BST, boosting tree model; RUSLE, revised
universal soil loss equation.

bulk density, shear strength, aggregate stability, and organic
matter are all changed, which leads to high soil erodibility and
erosion intensity increases (Wang L. et al., 2014; Sadeghi et al.,
2018). In addition, soil erosion modulus caused by wind erosion
is also an important aspect of soil erosion because the wind speed
is a vital factor that affects soil erosion (Teng et al., 2021). Soil
particles erode as the sheer pressure exerted by wind-force leads
to soil particles being hard to grip on the soil surface (Jiang
et al., 2018; Zhang et al., 2018). Furthermore, grazing livestock
and human activity are both key factors in the intensification of
soil erosion. Intensive grazing will alter and destroy soil surfaces,
causing whole sod to erode and expose mineral soil, especially in
areas with low vegetation cover (Lin et al., 2008; Evans et al., 2017;
Zhang et al., 2018).

Besides, frequent human activities will cause soil erosion, such
as collecting Chinese Caterpillar Fungus (Wang C. G. et al., 2018)
and overexploitation of tourist attractions, and so on (Yang Y.
et al., 2016). The comprehensive set of variables based on the
inclusion of freeze-thaw erosion, wind erosion, water erosion,
and human-caused erosion was more objective than that used
in the RUSLE or RWEQ model. The inclusion of these variables
may explain why the soil erosion results derived from this set of
variables were more excellent than the results from the RUSLE
or RWEQ model because this comprehensive set of variables

involved more soil erosion factors, including meteorological,
soil, topographic, vegetation, and management factors, which
enhance our understanding of soil erosion processes using a
data-based model.

Comparison of Categorical Variables and
Model
Evaluation results of model accuracy comparisons among five
variable selection methods and four prediction models are
illustrated in Figure 3. The model validation included machine
learning models and the RUSLE model. The results showed
that variable screening technology could further reduce model
complexity. The SA method selected 13 out of the 33 relevant
variables, i.e., climatic factors, including precipitation, wind
velocity, and rainfall; soil factors, including SOC, soil properties,
soil erodibility, and frozen earth period; topography factors,
including slope, aspect, and water flow direction; and vegetation
factors, including vegetation type and the NDVI. The UF method
largely reduces the number of variables that were most able
to explicate soil erosion. The Boruta algorithm screening out
the majority of climatic and topographic variables, thus abated
model collinearity. The feature-selection method can simplify
model parameters and reduce operational costs; in addition, this
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FIGURE 4 | The spatial distribution of the soil erosion modulus.

method can also improve the estimation accuracy of a model by
eliminating redundant interference parameters.

Our results showed that in terms of classification accuracy,
the RFE performs the best among the five feature-selection
algorithms and the Cubist model performs the best among
the four machine learning algorithms. The projected results
of the RUSLE model were limited by fixed parameters, which
included only rainfall, slope, slope direction, vegetation, and
soil texture. The accuracy of the RUSLE model is the lowest
among the models because some factors that may affect soil
erosion were ignored, such as diurnal temperature, strong winds,
freeze-thaw, and so on.

In order to gain much more insight through statistical analysis
and modeling compared to biased linear sampling along roads,
the conditional Latin Hypercube design for soil sampling to
even its spatial distribution would be adopted in our near future
studies (Ma et al., 2020; Tang et al., 2021).

New Strategy for the Prevention and
Control of Soil Erosion Loss in the
Source Park of the Yellow River
According to the Standards for Classification and Gradation
of Soil Erosion, 99% of the SPYR area experiences severe soil
erosion. (Ministry of Water Resources of the People’s Republic
of China, 2007), soil erosion modulus was further reclassified
into three grades: level I (severe, soil erosion modulus in 5,000–
6,000 t·km−2

·a−1), level II (moderately severe, the soil erosion
modulus in 6,000–7,000 t·km−2

·a−1), and level III (most severe,

the soil erosion modulus 7,000–8,000 t·km−2
·a−1). The soil

erosion modulus of each county was reclassified into three grades
(Figure 5). Level III erosion occurred mainly in the triangle zone
of Qumalai County and Maduo County. Level II erosion occurred
in Xinghai County, Dari County, Chengdu County, Western
Zeku County, Western Maqin County, Tongde County, and parts
of Jiuzhi County, Henan County, Gande County, and Yushu
County. Level I erosion primarily occurred in Eastern Maqin
County, Eastern Zeku County, and most areas of Jiuzhi County,
Henan County, Gande County, and Yushu County (Figure 5).

Severe soil erosion causes significant ecological degradation
as well as substantial ecological, economic losses in the SPYR.
For example, the economic monetization of SOC losses caused
by soil erosion total $47.90 billion in the SPYR. The economic
losses were approximately fivefold of the output value of animal
husbandry ($10.10 billion) in 2014 (Qinghai Bureau Statistics,
2014). We can infer that the economic monetization of soil
erosion would be far huger than the SOC loss. Actually natural
resources are priceless. Monetization of soil erosion loss is only a
caution light for taking a partial solution in eco-compensation.
Therefore, a new ecological policy recommendation based on
soil erosion reclassification should be proposed to balance
grassland conservation and animal husbandry production for the
prevention and control of soil erosion loss (Figure 6).

A conservative management strategy was suggested for some
fragile areas (soil erosion at level III) since grassland’s economic
products have led to serious soil erosion (Figure 6). This
grassland sector should not be used for grazing (Yin et al.,
2019). At this level, the government should provide ecological
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FIGURE 5 | Soil erosion modulus reclassified in each county.
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FIGURE 6 | Priority level of soil erosion control strategy.

subsidies to compensate for the economic losses caused by not
allowing grazing. Additionally, the government should relocate
local herder households to new countryside neighbors to cities.
At the same time management department should also supply
training projects to sustain transitions to alternative livelihoods
for these herdsmen, such as making Tibetan typical handicrafts
and building Tibetan distinctive hotels for developing Tourism.
Notably, over the long term, simply banning grazing may
result in a snowballing population increase of deleterious wild
animal species that are short of plenty natural predators, such
as rabbits and pika, thus probably resulting in new ecological
problems (Wang Y. et al., 2018). Therefore, after 5 years of
banning grazing, grasslands should be managed under a grass-
animal balance policy, or grazing should be continued to be
banned. The implemented policy will depend on the condition
of the grassland.

The moderately severe sector (level II) should be managed
intensively to improve the basic conditions (Figure 6). Even
now the balance of livestock and pasture production is an
important factor at level II soil erosion regions (Yin et al.,
2019). The study conducted by Fan et al. (2010) propose
that the determination of appropriate carrying capacity should
follow the principle of the “law of the minimum limiting
factors” in order to minimize degradation of the grasslands,
i.e., stocking rates should be primarily based on herbage yields
of low-productivity years, there is also the opportunity to
conserve forage in high-yield years and carry this over to
alleviate grazing pressure in low-yield years. Further, there is
the possibility of reducing grazing pressure on more degraded
parts of the grassland in high-yield years to aid their recovery.
For sustainable development, it is insufficient to manage grazing

systems solely within the framework of pasture productivity
(Lin et al., 2011) especially for distinctive erosion areas
(level II). The ‘optimum’ stocking rate should be obtained
from grazing experiments not only considering the forage-
livestock balance, but also maintaining the soil erosion at a
tolerable level. Sun et al. (2015) conducted a 3-year study on
Tibetan sheep on the Eastern Qinghai-Tibetan Plateau. They
found that the ‘optimum’ stocking rate that ensures economic
sustainability is 24 sheep months ha−1 (Sun et al., 2015).
Considering moderately severe soil erosion conditions in this
area, the stocking rate should not exceed one-third of the
‘optimum’ stocking rate in order to prevent and control the
soil erosion loss at level II soil erosion regions. If herder
households comply with this policy, then they should be able to
receive a subsidy.

The severe sector (level I) should be managed intensively
to improve grassland productivity via the application of certain
measures (fertilization, tillage, and resowing) for the sustainable
utilization of grassland (Figure 6). When soil erosion is at the
level I, the stocking amount should not exceed two-thirds of the
‘optimum’ stocking rate in order to obtain a certain production
income, meanwhile prevent and control the soil erosion. In
addition, the stocking rate in the cold-period pastures should
be less than the stocking rate in the warm-season pastures
(Sun et al., 2015).

CONCLUSION

New models using machine learning techniques that combine
local ecological variables (n = 33) were constructed based on the
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observed soil erosion modulus determined by the 137Cs element
tracing technique. 13 environmental variables played critical
roles in explaining the process of soil erosion. The results
from the comprehensive set of variables were more objective
than the produced from the RUSLE model. Nearly 99% of
the study region has an intensive erosion modulus (5,000–
8,000 t·km−2

·a−1). Northern soil erosion modulus was higher
intense than that in the Southern of the SPYR. The total erosion
loss was almost 8.45·108 t·a−1 in SPYR. The annual economic
loss of SOC caused by soil erosion throughout the entire
survey zone was generally $47.90 billion in 2014. In addition,
integrating monetization of nature resource into soil erosion
classification outlined a partial solution in eco-compensation,
and provided ecological policy recommendations for three levels
of soil erosion. That is a more accurate and flexible method of
managing grasslands.

The economic monetization of soil erosion may be
underestimated. This manuscript only accounted for SOC loss
during soil erosion. Obviously, natural resources are priceless.
Monetization of nature resource is only a partial solution in
eco-compensation.
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